Business Intelligence & Business Analytics Tags

O perfil do cientista de dados, de acordo com o LinkedIn

Ferris Jumah, cientista de dados do Linked In, publicou na rede um artigo sobre a dificuldade em descrever as características de sua profissão, mesmo que já existam diversos materiais que oferecem descrições e guias sobre esta carreira. Jumah fez algo diferente: analisou dados retirados da própria plataforma Linked In, a partir do perfil de pessoas que se dominavam “cientistas de dados”. Assim, conseguiu realizar uma abordagem mais assertiva para a definição desse profissional.

Habilidades mais populares entre os cientistas de dados, de acordo com o Linked In

Data Mining

Machine Learning

R

Phyton

Data Analysis

Statistics

SQL

Java

Matlab

Algorithms

Embora essa lista nos mostre quais são as habilidades mais encontradas nos perfis profissionais, fica difícil relacioná-las observando apenas para um ranking. Para facilitar o entendimento, Ferris Jumah foi mais fundo e criou o seguinte gráfico:

(clique aqui para visualizar a imagem em melhor resolução)

Cada nó representa uma habilidade. Com o objetivo de facilitar a visualização e o entendimento dessas informações, elas foram agrupadas por semelhança e representadas por cores. Em seguida, foram dimensionadas em relação a quantas vezes apareceram conectadas e em suas influências em outras habilidades na rede.

Várias são as conclusões podem ser tiradas a partir desse estudo. São algumas delas:

1) Abordam dados com uma mentalidade matemática

Vemos que machine learning, data mining, data analysisstatistics possuem uma classificação alta. Isso indica que ser capaz de entender e representar dados matematicamente, com intuição estatística, é uma habilidade fundamental para os cientistas de dados.

2) Uso de uma linguagem comum para o acesso, exploração e modelagem de dados

Python, R,e Matlab são as três linguagens mais populares para a visualização e modelo de desenvolvimento, e SQL é a mais comum para acesso a dados . Quando se trata de dados, extrair, explorar e testar hipóteses é uma grande parte do trabalho. Não é nenhuma surpresa que estas habilidades estejam em destaque.

3) Fortes desenvolvedores

Vemos também computer science e software engineering como qualificações, juntamente com Java, C ++, Algoritmos e Hadoop - todas tendo espaço notável na visualização de rede . Estas são as habilidades são usadas principalmente para aproveitar os dados para o desenvolvimento de sistemas.

Provavelmente não existe um profissional especialista em todas essas habilidades, mas sim e um ou duas delas. Esta é, portanto, uma visão holística das características representadas dentro de uma equipe típica de cientistas de dados.

E você, chegou a alguma outra conclusão a partir do estudo de Ferris Jumah? Divida com a gente!

Serviços

Em busca da informação gerencial estratégica, reunimos as técnicas mais modernas de software, processos e pessoas especializadas para conceber soluções completas de acordo com a sua necessidade. O objetivo é fazer você concentrar seus esforços naquilo que importa: o seu produto ou serviço!

A e-Setorial disponibiliza uma completa gama de serviços voltados para: